Investigation on a high power solid-state pulse generator

Jingming Gao, Hanwu Yang, Song Li, Baoliang Qian, Jun Zhang, Jiande Zhang

National University of Defense Technology, Changsha, China
September, 2016
Introduction

• Solid-state PPS characterized by high repeatability, high reliability, long lifetime, free maintenance and easy-to-use
• Such systems with moderate peak power (sub GW) are widely applied in high average power region
• Pursuing higher peak power with quasi square waveform for HPM, X-ray and more industrial applications...

S-3N 400kV 16kW (Burst) OSU 60 kV/75kW bipolar pulser 10GW/160 ns/20 Hz
Introduction

• **Switch**
 - high power capability
 - large power compression ratio
 - high switch speed
 - low switch impedance
 - high repetition rate and long lifetime

• **Insulation**
 - components still restricted to relatively low rated voltage
 - finish the power compression under lower voltage
 - fully profit the insulation rules

• **Energy transfer efficiency**
 - reducing energy lost is essential
 - important for thermal management

* magnetic switch
* low impedance pulse forming
* close-loop pulse transformer
System design

- High power magnetic switch based pulse modulation
- Low impedance pulse forming network
- Induction voltage adder for voltage step-up
- Modularization

A High Power, Low Impedance and Long Pulse Generator

Voltage Adder

Investigation on a High Power, Low Impedance, and Long Pulse Generator Based on Magnetic Switches

Jingming Gao, Hanwu Yang, Song Li, Zhaoxi Liu, and Baoliang Qian

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 42, NO. 4, APRIL 2014

EBM 2016, Estoril, Portugal, 18-22/09/2016
Circuit simulation

Circuit model

- Three magnetic switches for pulse modulation
- IVA performs dual functions of charging inductor and adder

![Schematic of a high power solid-state pulse generator](image)

![Schematic of a high power, low impedance and long pulse generator](image)
Circuit simulation

Simulation results

- IVA completes the dual functions well

<table>
<thead>
<tr>
<th>T_{FC}</th>
<th>Z_{FC}</th>
<th>L_C</th>
<th>$L_{m,IVA}$</th>
<th>$L_{s,IVA}$</th>
<th>R_{load}</th>
</tr>
</thead>
<tbody>
<tr>
<td>20ns</td>
<td>12Ω</td>
<td>29nH</td>
<td>18μH</td>
<td>100nH</td>
<td>50Ω</td>
</tr>
</tbody>
</table>

PFN charging and discharging voltage

Output pulse voltage on the load
Electromagnetic simulation

IVA response characteristics

- Symmetrical feeding responses much faster
- IVA with fewer stages performs better

<table>
<thead>
<tr>
<th>core material</th>
<th>outer diameter</th>
<th>inner diameter</th>
<th>height</th>
<th>thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>2605SA-1</td>
<td>406 mm</td>
<td>274 mm</td>
<td>20 mm</td>
<td>25 μm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>width</th>
<th>B_s</th>
<th>B_r</th>
<th>Insulation</th>
<th>stacking factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 mm</td>
<td>~1.56 T</td>
<td>≥1.4 T</td>
<td>120 V/layer</td>
<td>~0.82</td>
</tr>
</tbody>
</table>

Symmetrical feeding structure of the cell

Four-stage IVA

Simulation results of the IVA
Experimental test

Key sub-systems

- HVPS: AC-link, 0-30 kV/60 kJ/s
- Transformer: 0-150 kV/15μH
- MPC: 2-stage/20:1, Fe-based amorphous

HVPS

Close-loop pulse transformer

Magnetic pulse compressor

BH curve measurement
Experimental test

Key sub-systems

- Magnetic switch: coaxial winding and output ports
- Low impedance PFN: symmetrically circumferential structure
- IVA: symmetrical fed modules with $v \cdot s$ product of 24mV·s
Experimental test

Ceramic capacitor test

- Rep. test in μs region
- 40nF/80kV/10Hz/60s
- Further analysis of failure mechanism

Test platform:
- Magnetic switch
- PSS1
- Primary Capacitor
- HVPS input
- Transformer
- Trigger unit
- Reset circuit
- Test cell with PFN, PSS2 and water resistor

Test cavity
- PFN
- Water resistor
- Test waveforms

Normal status vs Capacitor broken

Test waveforms

Broken capacitors
Experimental test

Primary test results

- On-line DC reset condition
- 2.1GW/170ns/20Hz
- Risetime~50ns
- Prepulse~10%
- Energy transfer ratio~45%

Overlap mode

Sequential mode
Experimental test

Upgraded test results

• Magnetic switches and PFN upgraded
• 5.5GW/170ns/20Hz/5s
• Showing good repeatability and stability

Upgrade system

Overlap of 100 pulses
Conclusions

- A scheme for GW-level solid-state generator is put forward based on magnetic switch, low impedance PFN and IVA
- The latest results are 5.5GW/170ns/20Hz/5s, showing good repeatability and stability
- The primary switch would be replaced with semiconductor for all solid-state system

SMART: Solid-state Magnetic switched Accelerator for Repetitive Test
Thanks for your attention!